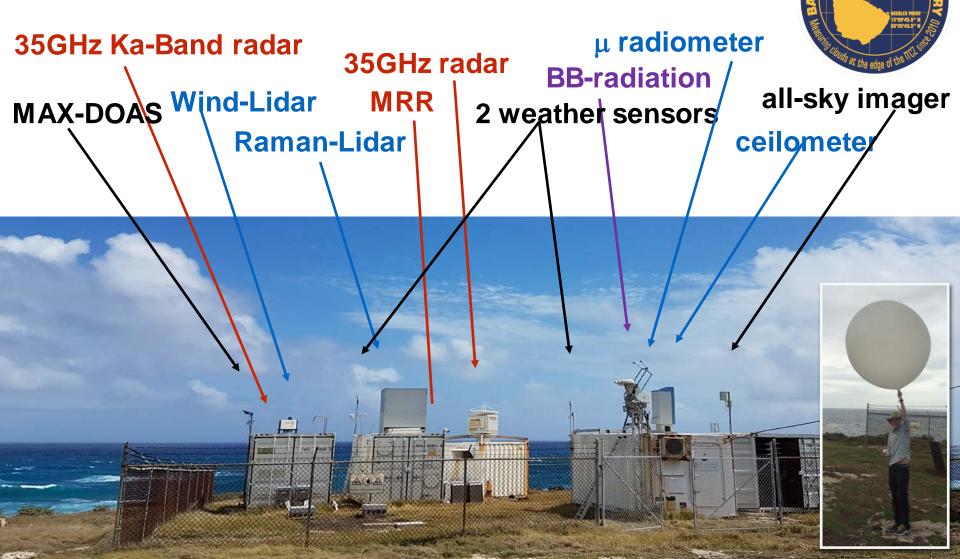
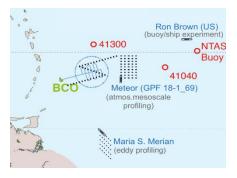
Eurec4a


exploring the interplay between clouds, convection and circulation

in the focus: trade wind clouds

- properties of trade wind cumulus (life-time, density, optical depth) are very sensitive to their environment
- trade wind cumulus are poorly represented in global modeling (cover too low, COT too high) ... yet are main contributors to climate cooling by clouds.

BCO ...since 2010



main goals

- improved representation in (global) modeling ...
 - cloud development
 - precipitation out of clouds
 - cloud decay
- understanding (cloud) controlling processes ...
 - large scale dynamics ?
 - moisture supply (lower boundary) ?
 - atmospheric stability?
 - aerosol ?
- in need for the spatial component → Eurec4a

Eurec4a!

- focused field campaigns covering a wider region
 ... with extra instruments for more detail
 - the 'network' elements
 - BCO western anchor station
 - plane 1 (Halo) rem. sens. from above / drop-sondes
 - plane 2 (ATF) cloud profiling and remote sensing
 - plane 3 (GB) in-situ cloud and aerosol sampling
 - plane 4 (US)
 - ship 1 (Meteor) aircraft coordination /cld processes
 - ship 2 (Merian) fresh water eddies / cloud processes
 - ship 3 (Atalante)
 - ship 4 (Ron Brown)

Eurec4a questions?

- what infl. by large-scale synoptic divergence?
 - coordinated 6-hourly radio-sondes from all ships supplemented by aircraft drop-sondes
- what infl. by ocean cond. (fresh water eddies)?
 - (cloud) measurements in and outside of eddies
- what are the processes near cloud-base?
 - in-situ sampling with a tethered balloon
- a new 'complete' reference data-set!
 - for modeling and satellite remote sensing

capture cloud properties

- structure
 - top/base/shear, aggregation state
- properties
 - droplet size, water content/profiles, precipitation
- temporal changes
 - life time, daily cycle

impact of environment on clouds

- water vapor
- large scale meteorology
- mesoscale features
- small scale mixing
- aerosol

tools 1: active remote sensing

	ship	plane	ВСО
• radar (35 Ghz)		2	1
radar (94Ghz)	3	1	1
 water vap radar (163hz) 	1		
ceilometer	3		1
 backscatter-lidar 	1	1	1
 DIAL water lidar 		1	
 Raman-lidar 	1		1
 HSRL-lidar 		1	
wind-lidar	1		1

tools 2: atmosphere - in situ

- cloud-kite
 - microphysics
 - turbulence
 - CCN
- UAVs
 - met package
 - camera package
- radio-/drop-sondes
 - vertical profiling

ship plane BCO

2 1

1

4 1 1

tools 3: passive remote sensing

	ship	plane	ВСО
 microwave radiometer 	2	1	1
 UV/VIS n-IR spectrometer 	1	3	
 broadband radiation 	3	1	1
 precipitation radar 	2		1
 X-band radar eddy cov. 	2?		
sun-photometer	4		1
disdrometer	3		1
isotopes in water vapor	3	1	
 vis/thermal cloud camera 	3	1	2

tools 1 - defining the ocean

	ship	plane	ВСО
 CDT (ocean profiling /sampling) 	3		
pump CTD/ MIMS	1		
 ocean biology (water filtering) 	2		
• gliders	2		1* argonaut/ seaglider
 drifting buoys 	1		
 surface floats with tracking 	1		
 far-IR spectrometer (M-AERI) 	1		

coordination ...

of similar instruments for maximum value...

- calibrate / compare (how often, when, how)
- assure spatial connectivity (pattern, setup)
- timing of sampling

of complementary instruments for insights...

needed co-location yet non-interference

of logistics

getting instrument ready, transport, setup