

Aircrafts Hauke Schulz

Satellites

Akio Hansen

Max-Planck-Institut für Meteorologie

- Quantification of macrophysical properties of trade-wind cumuli as a function of the large-scale environment
- Production of a reference data set that may be used as a benchmark for the modelling and the satellite observation of shallow clouds and circulation

EUREC⁴A sampling strategy

Bony, S.; Stevens, B.; Ament, F.; et al. EUREC4A: A Field Campaign to Elucidate the Couplings Between Clouds, Convection and Circulation. *Surv Geophys* **2017**, *38* (6), 1529--1568.

EUREC⁴A flight schedule

- HALO will characterize the cloud macroscopic conditions and its large-scale environment with remote sensing instruments and dropsondes
- HALO's advanced array of remote sensing will inform reconstruction of microphysical structure and aerosol environment
- ATR-42 will provide first measurements of the vertical cloud profile in a well constrained large-scale environment using upward and sideward looking radar, and sideward looking lidar
- ATR-42 will characterize the shallow cumulus field and boundarylayer properties within the circled area
- ATR-42 flies primarily at cloud base, but additional flights near the surface and near the inversion layer will record turbulence and state variables
- Additional planes will contribute with microphysical measurements or characterization of the meso-scale environment depending on instrumentation and flight-range

EUREC⁴A flight schedule

Planes, planes and more planes

19.02.2019 - EUREC4A ship coordination - Hauke Schulz

HALO – High altitude long range research aircraft

Belly Pod Section

- a. Radiometer Bank
- b. Water Vapour DIAL (WALES)
- c. Cloud and Precipitation Radar
- d. Thermal Imager
- e. SMART

Tail Section

- f. SMART
- g. specMACS
- h. Dropsondes

Stevens, B.; Ament, F.; Bony, S. et al. A High-Altitude Long-Range Aircraft Configured as a Cloud Observatory–the NARVAL Expeditions. *Bull. Amer. Meteor. Soc.* **2019**.

HALO	Instrument	Description	Derived products			
	HAMP cloud radar	 Brightness temperature at 26 selected microwave frequencies between 22 and 183 GHz Profiles of radar reflectivity, depolarization ratio & Doppler velocity 	 Integ. Water vapor Temperature & humidity profiles Cloud-, snow-, rain- water path Target classification, cloud geometry, rain rate 			
	HAMP radiometer	- Broadband down- and upwelling solar- and thermal- infrared irradiance	- Cloud radiative forcing (CRF)			
	WALES lidar	Profiles of: Backscatter coefficient, Color ratio of backscatter, Particle linear depol. ratio, Particle extinction coefficient	- Water vapor profile			
	SMART	- Spectral upwandard and downward irradiance (300-2200nm)	 Cloud top albedo Cloud optical thickness Cloud effective radius Cloud thermodynamic phase Liquid and ice water path 			
	specMACS	- Downward-looking hyper-spectral (400-2500nm) line imager	 Cloud mask Cloud phase Optical thickness Effective particle size Particle size distribution 			
	BAHAMAS	 In-situ observations of T, q, u, v, w (100 Hz) GPS position 				
	Thermal imager	- IR camera at 120Hz with four channels between 7.7 μ m to 12 μ m	Cloud maskCloud top temperature			
	Dropsondes	Profiles of RH, T, u, v				

Max-Planck-Institut für Meteorologie

19.02.2019 - EUREC4A ship coordination - Hauke Schulz

ATR-42	Instrument	Description	Derived products
	RASTA cloud radar	 Upward- and downward looking 95 GHz Doppler cloud radar with four antenna configuration for wind-vector retrievals 	 3D wind (upward) Vertical wind (downward) Boundary layer depth (upward)
	LNG lidar	 Backscatter lidar (upward, downwards or 35 deg pointing) (355nm, 532nm, 1064nm) 	 Boundary layer depth (upward) Vertical velocity in aerosol layer Optical parameters of aerosol and clouds
	BASTA cloud radar	- Doppler radar at 95 GHz looking sideways	 Cloud fraction and cloud optical properties just above cloud base height
	ALIAS lider	- Backscatter lidar at 355nm looking sideways	 Cloud fraction (about 10km) and cloud optical properties just above cloud base height
	Radiometers	 Three channel downward staring measurements of IR irradiance at 8.7, 10.8 and 12μm VIS camera (looking sideways) 	- SST
	Pyrgeometer	 Hemispheric broadband upwelling and downwelling thermal infrared radiative fluxes 	
	Pyranometer	- Hemispheric broadband upwelling and downwelling solar radiative fluxes	
	several	 In-situ: Liquid and total water contents Droplet size distribution (0.5-6000μm); 2D particle imaging (25-6000μm) Water isotopes Water vapor, temperature, pressure, 3D wind, momentum and heat fluxes 	
Max-Planck-In	stitut	19.02.2019 – EUREC4A ship coordination – Hauke Schulz	z

für Meteorologie

Possible additional planes Highlights

- BAS Twin OtterIn situ aerosol and cloud microphysical properties
(e.g. PSD from 25 nm to 1600 μm)
- NOAA G-IV Dropwindsondes system and Tail Doppler Radar

NOAA P3Lower fuselage C-band research radar – 360 deg.horizontal fan beam, sea surface temperature radiometer
and dropwindsonde system

Do you have questions?

How many aircraft-ship overpasses are needed/feasible? Do you need overpasses for calibration reasons? Is one aircraft/set of instrumentation more useful for comparison?

Remote sensing measurements at the Barbados Cloud Observatory (BCO)

Marcus Klingebiel 19 February 2019

BCO - Location

		and the second	100	· · · / / · · ·		1	13 M					•	•		Aug 07 20	16
4	•••+••••+ ₩₽	· • • • • • •	· · + · · · ·		†	1000	<u>† 1967</u>						• • • • • •		III 09:00	JIC
20				1	:	1						· \		" the		
				1. Jak							-		and a			
								: L								
. 15 . +	· · · · · · · +	+			÷ + · · · ·	+ + + + +	4.2.2	• • • •	+ \		Sky -			/		
	BCO										15	5 6	-	4	1000	
	C. C	5011							3-4-	\sim	1 00		and the	/ 5	1 Control	115
10 +			1.4. 1. 4	· • • • • • •	+ .		+/	F	+	, "pal		ς	F your		L	+ ;
	5		and the		3. Free		-	130		7 \$		3) [1	
C. C.	S. Martin	and the second	AL SPA							×		· (LL_	•	\sim , ;		
6: +		· · · · · · ·	·	and the second	+ + + + +	+	+		+			• • • • •	+			
		γ / γ									the second		1 and a start		10	
															-1 (-	1
	· · + + + + +	···	••+••*	• • • • • •	+ • • • •	+ • • • •	+	+	+	hard a se	• • • • • •	+ • • • • •	+ • • • • • • • • • • • • • • • • • • •	• • • • 5•	••••	
		÷A.	manz zar													
· · ·5· · + · ·	••+•••+	••••	· · + · · · ·	• + • • >	+ • • • •	+ + + + +	* • • • •	₽ 4 4 4 4 4 4	• • • • • • •	•••••	•	•••••	+ · · · · ·			+
																52
					<i>)</i> .											
	· · · · · · · · · · · ·	• • • • • • •	•••••	***/	† • • • • •			• • • • • •		•	• • • • • • • • • •		• • • • • •			+
65-	60 55	50	45	40	35	30	25 1 9 2	0 1	.5 1	0	5	0	5 1	0 1	5	20
Satellitendaten	Sun 07.08.16 (9.45 LITC ME	TEOSA									Co	ourtesy: L	WD and	A. Han	sen

BCO - Location

Shallow cumulus clouds...

- ...have a significant impact on Earth's **radiation budget** and upon the energy and water cycles (Neggers et al. 2007; Long et al. 2013).
- ...form **20% of the total precipitation** in the tropics (Short and Nakamura, 2000).
- ...induced precipitation plays an important role for the evolution of the boundary layer (Jensen, 2000).

BCO - Location

Stevens et al. (2016)

Shallow cumulus clouds...

- ...have a significant impact on Earth's **radiation budget** and upon the energy and water cycles (Neggers et al. 2007; Long et al. 2013).
- ...form **20% of the total precipitation** in the tropics (Short and Nakamura, 2000).
- ...induced precipitation plays an important role for the evolution of the boundary layer (Jensen, 2000).

Ka – Band Cloud Doppler radar

- 35.5 GHz
- temporal resolution of 10 s (2 s since May 2018)
- antenna diameter of 2 m
- vertical range up to 25 km
- sensitivity of -57 dBZ at 5 km

- 1500 nm
- temporal resolution of 1.3 s
- vertical velocities up to 20 m s⁻¹
- in an altitude between 50 m and ca. 1 km

- 35.5 GHz
- temporal resolution of 10 s (2 s since May 2018)
- antenna diameter of 2 m
- vertical range up to 25 km
- sensitivity of -57 dBZ at 5 km

- 1500 nm
- temporal resolution of 1.3 s
- vertical velocities up to 20 m s⁻¹
- in an altitude between 50 m and ca. 1 km

Ka – Band Cloud Doppler radar

W – Band Cloud Doppler radar

S. Schnitt is combining dualfrequency radar and microwave radiometer for water vapor profiling in the cloudy atmosphere.

- 35.5 GHz
- temporal resolution of 10 s (2 s since May 2018)
- antenna diameter of 2 m
- vertical range up to 25 km
- sensitivity of -57 dBZ at 5 km

- 94 GHz
- antenna diameter of 2 m
- vertical range up to 16 km
- sensitivity of -47 dBZ at 4 km

Take home messages...

The **Barbados Cloud Observatory** is located in the tropical trade wind region and measures since 2010 cloud and aerosol properties, solar radiation, vertical air motion, standard meteorology (T, p, u, etc.) ...

Website: <u>barbados.mpimet.mpg.de</u>

The instruments at the **Barbados Cloud Observatory** are similar to the payload of the **HALO research aircraft** (35 GHz radar, lidar, Radiometer, radiosondes, solar radiation instruments).

Thank you!

EUREC4A++ - Satellite Data

EUREC4A++ Ship Workshop - Hamburg, 19. - 20.02.2019

Akio Hansen

Met. Institute, University Hamburg

Akio Hansen – akio.hansen@uni-hamburg.de

Meteosat-10 Satellite – Real Color (17/08/16)

http://37.120.170.199/narval/

Meteosat-10 Satellite Images – Data availability

- Geostationary Meteosat 10 Images
 processed with DWD NinJo
- Reprocessed from 05/08/16 to 19/09/16 for consistency

Infrared 1.6 μm	VIS 0.6 μm	Airmass	
Infrared 3.9 μ m thermal	VIS 0.8 μm	Cloudtop	
Infrared 8.7 µm	Water Vapor 6.2 µm	Ice Clouds	
Infrared 9.7 µm	Water Vapor 7.3 µm	Night Micro Physics	
Infrared 10.8 μm	HRV	Real Color	
Infrared 12.0 μm	24hr Dust product	Severe Convection	
Infrared 13.4 μm			

ftp://ftp-projects.zmaw.de/narval/NARVAL2/MSG_Pictures/

ASTER Satellite Data

- Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on board of the TERRA satellite
- Data is only available on request! Proposal required.

Band	No. of Ch.	Spatial Res.		
Visible Near Infrared (VNIR)	3 NADIR 1 Backward	15 m		
Short-Wave Infrared (SWIR)	6 NADIR	30 m		
Long-Wave/Thermal Infrared (TIR)	5 NADIR	90 m		

https://asterweb.jpl.nasa.gov

MODIS Satellite Data (AQUA / TERRA)

- Moderate Resolution Imaging Spectrometer
- Nominal NADIR resolution: 250 m
- Two datasets per day

https://worldview.earthdata.nasa.gov

GOES-R 16 Satellite data

Geostationary satellite: up to 500 m spatial and 15 minutes ٠

http://re.ssec.wisc.edu

Cloudsat / A-Train Overpass Times

Cloudsat closest daytime overpass time:

Cloudsat closest nighttime overpass time:

Cloudsat closest daytime overpass time:

2020/01/20: 17:44 UTC (180 km) 2020/01/21: 18:18 UTC (1088 km) 2020/01/22: 17:15 UTC (572 km) 2020/01/23: 17:52 UTC (434 km) 2020/01/24: 16:52 UTC (1226 km) 2020/01/25: 17:29 UTC (221 km) 2020/01/26: 18:06 UTC (785 km) 2020/01/27: 17:04 UTC (875 km) 2020/01/28: 17:41 UTC (131 km) 2020/01/29: 18:18 UTC (1137 km) 2020/01/30: 17:18 UTC (523 km) 2020/01/31: 17:55 UTC (483 km) 2020/02/01: 16:53 UTC (1177 km) 2020/02/02: 17:30 UTC (172 km) 2020/02/03: 18:07 UTC (834 km) 2020/02/04: 17:07 UTC (826 km) 2020/02/05: 17:44 UTC (180 km)

2020/01/20: 05:17 UTC (937 km) 2020/01/21: 05:51 UTC (30 km) 2020/01/22: 06:29 UTC (976 km) 2020/01/23: 05:28 UTC (684 km) 2020/01/24: 06:04 UTC (322 km) 2020/01/25: 06:42 UTC (1327 km) 2020/01/26: 05:41 UTC (332 km) 2020/01/27: 06:17 UTC (673 km) 2020/01/28: 05:15 UTC (986 km) 2020/01/29: 05:54 UTC (19 km) 2020/01/30: 06:30 UTC (1025 km) 2020/01/31: 05:29 UTC (635 km) 2020/02/01: 06:06 UTC (371 km) 2020/02/02: 05:04 UTC (1289 km) 2020/02/03: 05:42 UTC (283 km) 2020/02/04: 06:19 UTC (722 km) 2020/02/05: 05:17 UTC (937 km)

2020/02/05: 17:44 UTC (180 km) 2020/02/06: 18:18 UTC (1088 km) 2020/02/07: 17:15 UTC (572 km) 2020/02/08: 17:52 UTC (434 km) 2020/02/09: 16:52 UTC (1226 km) 2020/02/10: 17:29 UTC (221 km) 2020/02/11: 18:06 UTC (785 km) 2020/02/12: 17:04 UTC (875 km) 2020/02/13: 17:41 UTC (131 km) 2020/02/14: 18:18 UTC (1137 km) 2020/02/15: 17:18 UTC (523 km) 2020/02/16: 17:55 UTC (483 km) 2020/02/17: 16:53 UTC (1177 km) 2020/02/18: 17:30 UTC (172 km) 2020/02/19: 18:07 UTC (834 km) 2020/02/20: 17:07 UTC (826 km)

Cloudsat closest nighttime overpass time:

2020/02/05: 05:17 UTC (937 km) 2020/02/06: 05:51 UTC (30 km) 2020/02/07: 06:29 UTC (976 km) 2020/02/08: 05:28 UTC (684 km) 2020/02/09: 06:04 UTC (322 km) 2020/02/10: 06:42 UTC (1327 km) 2020/02/11: 05:41 UTC (332 km) 2020/02/12: 06:17 UTC (673 km) 2020/02/13: 05:15 UTC (986 km) 2020/02/14: 05:54 UTC (19 km) 2020/02/15: 06:30 UTC (1025 km) 2020/02/16: 05:29 UTC (635 km) 2020/02/17: 06:06 UTC (371 km) 2020/02/18: 05:04 UTC (1289 km) 2020/02/19: 05:42 UTC (283 km) 2020/02/20: 06:19 UTC (722 km)

http://www.icare.univ-lille1.fr/predictor/

BCO: Longitude: -59.535639, Latitude: 13.1901325

GPM Core Satellite

- Global Precipitation Measurement (GPM)
- 13 channels from 10 GHz to 183 GHz, swath of 904 km
- Sensors:
 - Dual-frequency Precipitation Radar (DPR)
 - GPM Microwave Image (GMI)
- IMERGE product: combines and intercalibrates all available passive microwave precip. estimates with GPM core observatory and rain gauges

Time resolution	30 minutes		
Spatial resolution	0.1°~11 km		

https://pmm.nasa.gov/gpm

ICDC – Satellite dataset offers

- Two buoys time-series of last 3-5 years
 - Significant wave height and period
 - Windspeed and -direction
- 10 years satellite climatology of significant wave height (1x1°)
- Climatology of sea level anomalies (SLA)
- MODIS data on 1x1° grid
 - Total cloud cover, liquid phase, ice phase, undetermined phase
 - Cloud water (liquid, ice, undetermined phase)
 - Number of CCNs
 - Effective particle radius, Optical depth
 - Aerosol Optical depth datasets

http://icdc.cen.uni-hamburg.de/

Thank you for your attention! Questions?! Data Archiving? Data distribution? Required products?