Required EUREC4A Storm Resolving Model Output

February 24, 2023

Output data are required for the common analysis domain spanning 10 N to 20 N and 48 W to 61 W. Unless stated otherwise hourly data is required. Below you find the list of the data we would like to receive. If not all the data can be delivered, we would also welcome a subset of the required fields and fluxes.

2D Fields

Table 1 contains the 2D Surface and TOA fields. These are largely the same fields as required in Table 2, but this time for each horizontal gridpoint so that the horizontal variability of all these variables can be assessed at a hourly basis. As a rule of thumb it is preferred that instantaneous values for the fields are sufficient while hourly averaged values for the fluxes are preferred as these show significantly variability at subhourly timescales. If averaged values are not possible, then please provide instantaneous values but please do indicate that you have done so.

Variable Name	Description	Units	Range	Height	Notation
psl	sea level pressure	Pa	inst.	$0\mathrm{m}$	$P_{\rm s}$
sst	Sea Surface Temperature	K	inst.	0 m	$T_{\rm s}$
uas	10 m eastward wind	${ m ms^{-1}}$	inst.	10 m	$u_{10\mathrm{m}}$
vas	10 m northward wind	${ m ms^{-1}}$	inst.	$10\mathrm{m}$	v_{10m}
tas	2-metre air temperature	Κ	inst.	$2\mathrm{m}$	$T_{2\mathrm{m}}$
qas	2-metre specific humidity	${ m kgkg^{-1}}$	inst.	$2\mathrm{m}$	$q_{ m v,2m}$
hfss	Surface Sensible Heat flux	$ m Wm^{-2}$	av	$0\mathrm{m}$	$\rho c_p \overline{w'T'}_{\rm s}$
hfls	Surface Latent Heat flux	${ m Wm^{-2}}$	av	$0\mathrm{m}$	$\rho L_v \overline{w' q'_v}$
pr	Surface precipitation	${\rm kg}{\rm m}^{-2}{\rm s}^{-1}$	av	$0\mathrm{m}$, e 10s
ewss	Eastward surface stress	$kg m^{-1} s^{-2}$	av	$0\mathrm{m}$	$\rho \overline{u'w'}_{s}$
nsss	Northward surface stress	$kg m^{-1} s^{-2}$	av	$0\mathrm{m}$	$\rho \overline{v'w'}_{s}$
rlds	Surface downwelling longwave flux	$\widetilde{\mathrm{W}}\mathrm{m}^{-2}$	av	$0\mathrm{m}$	$F_{\rm rad,s,lw,dwn}$
rlus	Surface upwelling longwave flux	${ m Wm^{-2}}$	av	$0\mathrm{m}$	$F_{\rm rad,s,lw,up}$
rsds	Surface downwelling shortwave flux	${ m Wm^{-2}}$	av	$0\mathrm{m}$	$F_{\rm rad,s,sw,dwn}$
rsus	Surface upwelling shortwave flux	${ m Wm^{-2}}$	av	$0\mathrm{m}$	$F_{\rm rad,s,sw,up}$
rsdscs	Surface downwelling shortwave flux - clear sky	${ m Wm^{-2}}$	av	$0\mathrm{m}$	$F_{\rm rad,s,sw,dwn,cls}$
rsuscs	Surface upwelling shortwave flux - clear sky	${ m Wm^{-2}}$	av	$0\mathrm{m}$	$F_{\rm rad,s,sw,up,cls}$
rldscs	Surface downwelling longwave flux - clear sky	${ m Wm^{-2}}$	av	$0\mathrm{m}$	$F_{\rm rad,s,lw,dwn,cls}$
rluscs	Surface upwelling longwave flux - clear sky	${ m Wm^{-2}}$	av	$0\mathrm{m}$	$F_{\rm rad,s,lw,up,cls}$
rsdt	TOA incoming shortwave flux	${ m Wm^{-2}}$	av	TOA	$F_{\rm rad,toa,sw,in}$,
rsut	TOA outgoing shortwave flux	${ m Wm^{-2}}$	av	TOA	$F_{\rm rad,toa,sw,out,}$
rlut	TOA outgoing longwave flux	${ m Wm^{-2}}$	av	TOA	$F_{\rm rad,toa,lw,out,}$
rsutcs	TOA outgoing shortwave flux - clear sky	${ m Wm^{-2}}$	av	TOA	$F_{\rm rad,toa,sw,out,cls}$
rlutcs	TOA outgoing longwave flux - clear sky	${ m Wm^{-2}}$	av	TOA	$F_{\rm rad,toa,lw,out,cls}$

Table 1: required 2D Surface, TOA Output Variables (60 min interval).

Table 2 contains the required vertical integrated values of cloud and humidity related properties. Since we are interested in the spatio-temporal development of these variables these 2D fields are requested every 15 minutes.

Short Name	Long Name	Units	Range	Notation
tcc lcc hcc prw clwvi clivi	Total Cloud Cover Low Cloud Cover High Cloud Cover water vapor path condensed water path ice water path	$\begin{array}{l} [0 \dots 1] \\ [0 \dots 1] \\ [0 \dots 1] \\ \mathrm{kg} \mathrm{m}^{-2} \\ \mathrm{kg} \mathrm{m}^{-2} \\ \mathrm{kg} \mathrm{m}^{-2} \end{array}$	inst. inst. inst. inst. inst. inst.	cloud cover below 680 hP cloud cover above 680 hP $\int q_v \rho dz$ $\int q_c \rho dz$ $\int q_i \rho dz$

Table 2: required output 2D Integrated Variables (5 min interval).

2D fields at designated heights

Table 3 contains a number of essential fields at designated heights: the middle of the subcloud layer, near cloud base height, near cloud top height, just above cloud top height and the middle of the troposphere.

Short Name	Long Name	Units	Range	Levels
u2d v2d t2d q2d w2d g2d q12d r2d rh2d	zonal component wind meridional component wind temperature specific humidity vertical velocity geopotential height liquid water rain water relative humidity	$\begin{array}{c} ms^{-1} \\ ms^{-1} \\ K \\ kgkg^{-1} \\ m/per/second \\ m \\ kgkg^{-1} \\ kgkg^{-1} \\ [\ldots] \end{array}$	inst. inst. inst. inst. inst. inst. inst. inst.	970, 900, 850, 700, 500 hPa 970, 900, 850, hPa 970, 900, 850, hPa

Table 3: required 2D fields at specified levels (60 min interval)

3D fields at coarser resolution

Storage of some 3d fields is desirable but also requires enormous storage capacities and is not easy to handle. We therefore propose propose to store 3d data at a coarse grained resolution of $10 \,\mathrm{km}^2$ for levels below 5 km over the whole simulation domain.

Finally within a square of size of 100 km around the centre of the EUREC4A circle (centre at 57.72 W, 13.30 N), 3d hourly output of the fields listed in table 6 should be outputted at the full operational horizontal resolution.

Short Name	Long Name	Units	Range
u	zonal component wind	${ m ms^{-1}}$	inst.
v	meridional component wind	${ m ms^{-1}}$	inst.
t	temperature	Κ	inst.
q	specific humidity	$\mathrm{kg}\mathrm{kg}^{-1}$	inst.
W	vertical velocity	m/per/second	inst.
clwc	liquid water	$kgkg^{-1}$	inst.

Table 4: required 3D fields at a coarse grained horizontal resolution of 10 km (60 min interval)